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This article estimates the variation in personal network size, using respondent

data containing two systematic sources of error. The data are the proportion of

respondents who, on average, claim to know zero, one, and two people in

various subpopulations, such as ‘‘people who are widows under the age of 65’’

or ‘‘people who are diabetics.’’ The two kinds of error—transmission error

(respondents are unaware that someone in their network is in a subpopulation)

and barrier error (something causes a respondent to know more or less than

would be expected, in a subpopulation)—are hard to quantify. The authors

show how to estimate the shape of the probability density function (pdf) of the

number of people known to a random individual by assuming that respondents

give what they assume to be accurate responses based on incorrect knowledge.

It is then possible to estimate the relative effective sizes of subpopulations and

produce an internally consistent theory. These effective sizes permit an evalua-

tion of the shape of the pdf, which, remarkably, agrees with earlier estimates.
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he natural sciences have made steady progress in the acquisition of

knowledge about observed phenomena and theories that explain these

phenomena in such a way that they can be tested. Social scientists have

yet to agree on the fundamental building blocks of their science, but the

idea of a social physics is a venerable part of social science. The first edi-

tion of Adolphe Qu�etelet’s book, Sur l’homme et le developpement de ses

facult�es, in 1835, carried the audacious subtitle, essai d’une physique

sociale. The idea of a social physics continues to have appeal. At the

beginning of the twentieth century, Georg Simmel began a program of

research based on the analysis of triads (relations between three people),

which he saw as the fundamental building blocks of society. Indeed, later

work (Cartwright and Harary 1956; Davis 1967, 1970; Davis and Lein-

hardt 1972; Holland and Leinhardt 1970, 1971; Johnsen 1985, 1986,

1989) shows that the specification of microstructure in terms of triads can

lead to specific forms of macrostructure, and conversely.

In the 1950s, George Homans laid out rules for the analysis of social

behavior, suggesting, as his contemporary B. F. Skinner did, that we focus

not on internal mental states to explain behavior but on the context and

outcomes. During that time, he also took aim at structural-functionalism,

asserting that social phenomena are produced by individuals, not social

systems, and analyzing processes in which individuals make exchanges

with each other, presenting his version of social exchange based on operant

psychology (Homans 1961; see also Thibaut and Kelley 1959). Peter Blau

(1964) pursued this further, looking at the patterning of social exchange as

a basis for the study of social phenomena. Through the later work of

Emerson, Cook, Willer, and many others (see the authors and coauthors in

the referenced works by Cook and Willer), social exchange has grown and

branched out to became theoretically and mathematically developed and to

have its principles and hypotheses empirically tested in field and laboratory

settings (Emerson 1972a, 1972b; Cook 1987; Cook, Molm, and Yamagishi

1993; Willer and Anderson 1981; Willer 1999; Willer et al. 2002).

Other research, including our own, also takes a more microstructural

view, after Radcliffe-Brown (1957), seeing people as nodes connected to

other nodes in ways that lend themselves to measurement and prediction. In

other words, by understanding the fundamental properties that connect

humans, we believe we should be able to predict social phenomena and, it

is hoped, solve problems that arise from those connections. In our own early

research, we addressed such fundamental issues as the accuracy of respon-

dents’ reports about these connections (Bernard et al. 1984). We felt this to

be important since inaccurate data are likely to generate inaccurate theory.

T
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There remains a staggering lack of reliable data on the connections

between ordinary humans since monitoring of human interactions (or,

indeed, self-monitoring) is a time-consuming and expensive business.

Experience sampling (Csikszentmihalyi and Larson 1987) holds promise,

but it has not been used to collect social network data. Thus, social scien-

tists are in the unusual position of still not knowing some basic quantita-

tive facts concerning the linkages between people. This lack of knowledge

is responsible for the continuing interest in the ‘‘small-world’’ phenom-

enon. This is formally the appearance of coincidence when two seemingly

unrelated social connections come together and the mechanisms whereby

this can occur. In many studies, it involves the passage of information

along a chain of acquaintances from a collection of starters (randomly

selected individuals) and a specified target person. This number is found

empirically to be of order 5-6 (Milgram 1967; Travers and Milgram

1969), which is found by most people to be surprisingly small.

If we knew that any individual knew, say, exactly 3,000 people, we

would hardly be surprised about this since our friends’ friends’ friends

would, without overlap of personal networks, comfortably exceed the

world population. Basic calculations on network size were made by de

Sola Pool and Kochen (1978; also cf. Kochen 1989’s review volume),

although the problem dates back to 1936 (see Problem 38 in Mauldin

1981), and the problem itself gives rise to the Erdös number (the connec-

tivity of joint-authorship scientists to Paul Erdös). Thus, our small-world

surprise is due to the suspicion that we know, on average, significantly

fewer than 3,000 people. The word suspicion is used advisedly: There is

remarkably little research on the size of people’s networks.

The majority of small-world research has had to proceed without direct

knowledge of one key fact: the probability density function (pdf), or sim-

ply density, of the number c of people known by a random individual. This

pdf is simply some function of c, which we shall denote by �PðcÞ. �PðcÞ is

just the probability that a random individual knows precisely c people

(under some definition of knowing). Obtaining �PðcÞ must be one of the

grails of social network theory. As far as we are aware, there are few esti-

mates of �PðcÞ for ordinary individuals; those we have suggest an average

of about 290 people known to a random individual (Killworth and Bernard

1978; Killworth, Johnsen, et al. 1998; Killworth, McCarty, et al. 1998)

with a long-tailed distribution. Silverman (1986) discusses approaches to

estimating pdfs from data.

Mathematical models of the small-world problem have perforce been

based on random graph models in which only simple linkage structures
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have been assumed, partly, of course, for mathematical tractability (cf. the

biased net theory of Skvoretz, Fararo, and Agneessens 2004). The models

have almost exclusively omitted any estimates for the connectivity of the

general public (cf. Watts 1999, 2003; Newman, Watts, and Strogatz

2002), although accurate data have been employed for specialized subpop-

ulations (Newman 2002). A popular assumption is that of a scale-free net-

work (cf. Watts 2004). It is clear that progress cannot be made on

modeling the small-world problem in nonspecialized settings unless the

pdf for c is known.

Empirical approaches themselves contain several difficulties. Infor-

mants attempting to pass a message, or information, toward a target per-

son have to make a choice, based on their own imperfect data, as to who

is the ‘‘best’’ person to pass on the information to. Since there are many

things people do not know about their acquaintances, the resulting data

are likely to themselves be highly imperfect. Indeed, White (1970)

showed that the only reason the typical path in a small-world experiment

is of length 5-6 is that people make mistakes in choosing the next inter-

mediary in a small-world chain. To date, our best estimates of how

choices are made remain empirical: Compare Killworth and Bernard

(1978) and the extensive decision trees in Bernard, Killworth, and

McCarty (1982), based on the information respondents requested about

the targets in a hypothetical small-world experiment. Dodds, Muhamad,

and Watts (2003) used the World Wide Web to carry out a large ‘‘small-

world’’ experiment involving chains of acquaintances toward a target

person. Unfortunately, the experiment had a completion rate of only 0.6

percent, compared with 22 percent in the original Travers and Milgram

(1969) study, and so provided rather less information on how small-world

choices are made than might have been hoped.

Thus, two key items emerge if we wish to study the linkages between

individuals. The first is the pdf �PðcÞ; the second is how to estimate it given

imperfect data, obtained from asking informants questions to which they

themselves only possess imperfect knowledge.

This article, then, is specifically about estimating this pdf, in the pre-

sence of data that are, traditionally, noisy and full of human error.

Sources of Data Error

Methods to measure c and its distribution empirically have been developed

through proxy approaches (Freeman and Thompson 1989; Killworth et al.
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1990; Killworth, McCarty, et al. 1998; McCarty et al. 2001). These

methods involve asking respondents how many people they know in certain

categories or subpopulations. This instrument possesses (at least) two types

of error, which we have termed transmission errors and barrier effects.

A transmission error usually occurs when an individual is simply unaware

that a member of his or her personal network lies within a subpopulation

(e.g., is a diabetic), although false positives could also occur. A barrier

effect occurs when the network position of a respondent relative to the net-

work position of the subpopulation causes the respondent to know signifi-

cantly more or fewer members of the subpopulation than would be expected.

The first of these errors (transmission) causes respondents to give

incorrect answers about the membership of their network. The second of

these errors (barrier) causes the responses about a subpopulation—

although correct—to be uncharacteristic of the size of that subpopulation.

Although common sense tells us that barrier effects and transmission

errors do exist, we are not certain of the extent of their impact for our

empirical estimates of the size of subpopulations. The results of analyses

of existing data from our various surveys briefly detailed here demonstrate

the potential for these errors to confound many methods. It is worth, how-

ever, discussing the differences before we proceed.

First we consider barrier effects, which are a form of bias; some aspects

of the barrier effect are dealt with in homophily studies and the ‘‘social

distance’’ literature (e.g., McPherson, Smith-Lovin, and Cook’s 2001

review), but many are not. For example, doctors are more likely to know

doctors (homophily), but they are also more likely to know diabetics,

which is not homophily. There are many possible barriers affecting expo-

sure to certain subpopulations, with an obvious one being geographical,

and others needing elucidation. We have begun an investigation of barrier

effects by examining how respondents’ reports of the number of people

they know in subpopulations vary with properties of the respondents

(though, as noted, there will also be a dependence on properties of the sub-

population under some circumstances). As an example, for a representa-

tive survey of 796 people in the United States, the mean number of Native

Americans known to respondents in each of the 50 U.S. states and the

fractional number of Native Americans in each state are highly correlated

(r= :58 , p= :0001 ). Thus, those living close to Native Americans know

proportionally more than those living further away, with obvious effects

on theories based on proxy information.

However, the difficulty this could present is mitigated if a survey is truly

representative across the country or if many (and different) subpopulations
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are used. Surveys confined to small geographical areas may be subject to

geographical barrier effects. For example, consider a survey limited to Flor-

ida (Killworth, Johnsen, et al. 1998), which predicted a much higher num-

ber for the HIV-positive subpopulation than the national survey reported

here. This (positive) barrier effect occurred due to the larger proportion of

HIV-positive people in Florida than nationally but disappeared when the

national survey (Killworth, McCarty, et al. 1998) was undertaken.

If the distribution of the personal network size for a subpopulation differs

significantly from that for the entire population, then a different form of bar-

rier effect occurs. For example, if the subpopulation is AIDS victims, who

are known to limit the size of their networks (Johnsen et al. 1995; Shelley

et al. 1995), then the members of that subpopulation will be proportionally

underreported compared with the actual size of the subpopulation. In our

sample below, people who are imprisoned and, possibly, some other subpop-

ulations may suffer from this effect. Conversely, subpopulations whose

activities require them to know more people than normal (e.g., clergy, an

example of which is given below) would be overreported by respondents.

It may be more difficult to remove barrier effects if they are less easy to

anticipate. Analyses of variance across a combined national data set of

almost 3,000 respondents showed significant differences in the number

known in a subpopulation with almost any sociodemographic variable ana-

lyzed. This holds true even for apparently innocuous subpopulations such as

‘‘people named Michael.’’ In other words, the results of proxy methods are

subject to a variety of barrier effects; the simple assumption—that by using

a representative sample, the effects can be overcome—may be erroneous.

Given that barrier effects are a function of the respondent and of the

subpopulation, we can study their presence by looking for relationships

between the attributes of the respondent and subpopulation and the

respondent’s report of the number known in the subpopulation. Transmis-

sion errors, on the other hand, are not necessarily a function of respondent

characteristics but of the network members the respondent is trying to

report about. Any empirical study of transmission errors must start with

the members of the subpopulations.

We examined the reasons people do or do not tell people they know

about their membership within four subpopulations: diabetics, Native Amer-

icans, twins, and widows younger than age 65. We chose these subpop-

ulations because they were among the largest in our surveys and those we

thought might be most susceptible to transmission error. For each of 24 sub-

jects (6 from each of the four subpopulations), we elicited a network alter

from each of five relation categories: family, nonsocial coworker, social
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coworker, neighbor, and organizational affiliation. We chose these relation

categories for their potential variability in the transmission of membership

information in the subpopulation.

Some of the results in Table 1 are due to the phrasing of the question.

For example, we should not be surprised that none of our respondents who

were twins told their family members about their status as members of these

subpopulations—obviously, the family members knew already.1 With the

exception of family members, the table demonstrates wide variability across

the rows and down the columns. In other words, respondents who are mem-

bers of these subpopulations tell people about them based on whom they

are talking to (family, coworker, neighbor, etc.), and the probability of tell-

ing varies by subpopulation (twins, diabetics, etc.). When further questioned

about their reasons for not telling, respondents gave a variety of reasons.

For example, diabetics sometimes did not tell because ‘‘it never came up.’’

Others did not tell because they feared discrimination in the workplace.

We are aware that the true test is to examine whether the alters actu-

ally did know the information specified. However, under modern condi-

tions, it is far from easy to obtain permission to contact alters, unlike,

say, Laumann’s (1969) study of the accuracy of respondents as to infor-

mation known by their alters.

This study helped us verify that transmission error does exist; however, it

provides us with no obvious way to correct it. This is due to the fact that

transmission error probably varies by subpopulation in response to issues

such as stigma, triviality, and so on. This error may be subpopulation specific

Table 1

Percentage of Respondents in a Given Population Who

Told a Network Member From a Specified Category

That They Are in the Population

Population

Network Member Diabetic Twin

Native

American

Widow or Widower

Younger Than Age 65

Family 70 0 13 83

Nonsocial coworker 78 71 37 20

Social coworker 75 86 37 40

Neighbor 60 57 37 17

Organization affiliation 67 86 13 17
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or may depend only on classes of subpopulations (except that the correction

should generally be positive).

Henceforth, we assume the existence of transmission error and barrier

effects and subsume them under a single ‘‘error’’ in respondent reports; it

is this error that we seek to mitigate.

Posing the Problem

We define the set of quantities Pn, where n ¼ 0; 1; 2; . . .. Here, PnðpÞ is

the probability that a random respondent knows precisely n members of a

subpopulation of fractional size p. We assume that PnðpÞ is independent of

the respondent and that it depends solely on the size of the subpopulation.

The quantities PnðpÞ are simple to compute—at least empirically—from

survey data: One asks a large number of nationally representative respon-

dents how many people they know in the population in each of several sub-

populations (we use 29 below) of known fractional size within the total

population and counts those reporting zero, one, two, and so forth in each

subpopulation. We concentrate here on P0, P1, and P2 for the most part

(and P0, P1 for much of that) since there is distinct evidence of heaping, or

reporting round numbers, when reported numbers get above 5 (Huttenlocher,

Hedges, and Bradburn 1990; Baker 1992; Roberts and Brewer 2001). We

are thus uncertain of the accuracy of reports of higher numbers while sus-

pecting that reports of knowing precisely zero or one subpopulation mem-

ber may be more accurately reported (while still possessing error).

Our model is simple (we are concerned here, after all, with the effects

of error on its results). We assume that the probability that any member of

a respondent’s network is in a subpopulation of fractional size p is simply

p. In other words, the only aspect of a particular subpopulation with any

bearing on the probability of being known to an average respondent is the

subpopulation size.2 While the transmission and barrier effects discussed

above will cause this assumption of independence to be in error—which

we examine here—the model reduces to a simple binomial since all the

choices are independent by our assumption.

If the pdf �PðcÞ is known, Pn can be calculated as follows:

Pn =
X
c

�PðcÞ · prob ðsomeone knowing c people knows

precisely n in the subpopulationÞ
=
X
c

�PðcÞcCnp
nð1� pÞc− n;

ð1Þ
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since the probability of knowing precisely n is by assumption a binomial;

here, aCb is the number of combinations of b from a. As yet, we do not

know the distribution �PðcÞ, but we can make deductions from the above

without knowing �PðcÞ.
To begin with, consider P0ðpÞ, the probability of knowing nobody in a

subpopulation. There are two fixed points. Apart from errors of commis-

sion (inventing a member of a subpopulation; cf. Killworth et al. 2003), a

respondent cannot know anyone in a subpopulation of size zero. Thus,

P0ð0Þ ¼ 1. Similarly, if a subpopulation comprises the entire population,

it is impossible to know zero members of it, so P0ð1Þ ¼ 0. We also know

that P1ð0Þ ¼ P2ð0Þ ¼ . . . ¼ 0 since one cannot know one, two, and so

forth members of a subpopulation of size zero.

Consider

dPn

dp
¼
X
c

�PðcÞcCnfnpn�1ð1� pÞc�n � ðc� nÞpnð1� pÞc�n�1g:

Now

Pn+1 ¼
X
c

�PðcÞcCn+1p
nþ1ð1� pÞc�n�1;

and

cCnþ1 ¼ cCn

c� n

nþ 1

� �
;

so that

dPn

dp
¼ n

p

X
c

�PðcÞcCnp
cð1� pÞc�n

� nþ 1

p

� �X
c

�PðcÞcCnþ1p
nþ1ð1� pÞc�n�1

¼ n

p
Pn �

nþ 1

p

� �
Pnþ1:

Thus,

Pn+1 ¼
1

ðnþ 1Þ nPn � p
dPn

dp

� �
:

Note the special case

P1 ¼ �pdP0=dp: ð2Þ
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It is easy to show that

PnðpÞ ¼
ð�1Þn

n!
pn d

nP0

dpn
;

so that knowledge of the distribution of the probability that nobody is

known in a subpopulation (i.e., P0ðpÞ) means that the distribution of the

probability of knowing any required number in a subpopulation is known,

provided that P0ðpÞ can be differentiated sufficiently accurately.

This is a serious requirement when actual data are confronted. We here

use data from two surveys: a ‘‘standard’’ nationally representative survey

of 796 respondents, as well as a survey of 131 clergy of different faiths,

chosen on the (correct) assumption that clergy know more people than

nonclergy know. In each survey, we asked respondents how many they

knew in each of 29 subpopulations of known size and estimated P0ðpÞ,
P1ðpÞ, and P2ðpÞ, where p is the known fractional size of each subpopula-

tion. Details of these surveys and the subpopulations are given in McCarty

et al. (2001).

Figure 1 shows P0ðpÞ for the two surveys. The two curves are well cor-

related, indicating that our surveys are replicable (McCarty et al. 2001).

However, the two curves are hardly smooth. Computing their gradients to

generate a potential P1ðpÞ would be impossible. The same jaggedness

extends to P1, P2 (Figure 2), although there are hints that this is lessened

for higher numbers known (henceforth, data are only shown for the 796

survey respondents for clarity).

Some jaggedness would be expected from simple experimental error

(in that we use a finite sample to estimate a probability). However, that

random variability could not be so strongly correlated between samples

and is far in excess of what would be expected from standard sampling

theory. Whatever is happening is then not random but a signal of a pro-

cess in respondents’ minds. How to cope with this forms the body of

this article.

Exploring a Possible Solution

Any approach has to accept that the existence of errors causes respondents

to provide data consistent with a fractional population size something

other than the actual fraction. Statistical fitting techniques exist and could

be employed, but our purpose is to see if error effects can be included sen-

sibly in calculations by a direct, if simple, model of the effect of the error
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process. Two possible models suggest themselves: (a) assuming errors lie

in the P0 values and (b) assuming errors lie in the p values.

Errors Occur in P0 Values

One can consider the possibility of adjusting each observed value of P0

in Figure 1 up or down to make the P0 curve smooth in some way. Initi-

ally, this appears attractive since it maintains the actual values of p (which

are certainly the most accurately known of our data). Examination of

either of the two curves suggests that there may be two (or more) distinct

Figure 1

The Probability P0ðpÞ of Knowing No Member of

a Subpopulation of Fractional Size p

Note: Two sets of data are plotted: Full circles show the standard data used elsewhere in this

article, a nationally representative survey of 796 respondents; open circles show the same for

a survey of clergy of different religions. Some subpopulations are identified.
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sets of values in existence, depending on the type of subpopulation. For

instance, it is clearly more difficult to know that a member of one’s net-

work is a widow than it is to know that a member is called Robert,

although the size of both these subpopulations is similar.

To deal with this would indeed involve some ad hoc method to raise or

lower one set of points against another to make the curve smooth. This

seems to us to be unsatisfactory on several grounds. First, the amount that

any point needs to be shifted depends on the type of subpopulation (i.e.,

on the degree of error) so that two points with almost identical p values

might need to be adjusted by different amounts. Second, the effects on P0,

P1, and so on would not be identical (since (1) shows that p enters these

Figure 2

The Probabilities P0ðpÞ;P1ðpÞ, and P2ðpÞ as Functions
of the Fractional Size of the Subpopulation p

Note: The first curve is a copy of that in Figure 1.
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quantities in a nonlinear fashion) and so would be impossible to predict.

We invested considerable time and effort in an attempt to develop weights

to adjust for the transmission error we knew to exist in each of the popula-

tions that we asked respondents to estimate. These efforts included two

studies: (a) the development of a decision model to explain to which mem-

bers of a population the members of a target group tell their membership

in the target group and (b) an ambitious ‘‘alter-chasing’’ study where we

identified ‘‘starter’’ members of several populations, elicited a set of net-

work alters, and called those alters to ask whether they knew about the

starter’s membership in the population. These studies demonstrated that

any real attempt to estimate this variability empirically would be very dif-

ficult and expensive and could potentially introduce as much noise, via the

weights, as we are attempting to remove.

We also sought some smooth functional form for P0ðpÞ and performed

fitting exercises. The scatter in Figure 2 demonstrates that almost any

decreasing function of p would fit the data equally well, and this approach

has also to be discarded.

Errors Occur in p Values

We therefore proceed with the second approach—namely, that the

combined effect of transmission errors and barrier effects has simply mis-

placed each point on the p-axis. In other words, respondents react as if the

above equations hold but with modified values of p, which reflects the

fraction of their network that they are aware lies within a subpopulation.

More formally, we assume that transmission errors and barrier effects con-

spire so that subpopulation i, of fractional size pi, is actually reported as if

it were of size p0i, where

p0i ¼ λipi;

and λi is a factor accounting for transmission errors and barrier effects

whose value may be more or less than unity depending on the form taken

by the errors. Recall that this factor is independent of the respondent since

we deal exclusively with averages across all respondents. A value of

λi < 1 might indicate transmission error or barrier effects, making it hard

to know members of a subpopulation (e.g., those who limit their net-

works). Values of λi > 1 might involve subpopulations whose networks

are larger than usual (e.g., clergy or members of some political groups).

In effect, the x-abscissas of Figures 1 and 2 are misplotted (and may be

in the wrong order) because they should be plotted using the (unknown)
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p0i as values, so our data essentially refer to P0ðp0Þ, not P0ðpÞ. Put another

way, we assume that respondents are giving data based on a subset of a

subset of their network: the part of the subset of all those in a subpopula-

tion of which the respondent is aware (for transmission error) or can be

aware (for barrier effect). For ‘‘visible’’ subpopulations—those with small

errors—this will be the majority of the subpopulation that is known. For

less visible subpopulations—those with large errors—it will be only some

fraction of the subpopulation. (This, so far somewhat arbitrary, process

will be both quantified and validated later.)

Evidence for this belief is found by reordering the data in Figure 2 in

descending order of P0. This satisfies the requirement from (2) that P0

should decrease with p. This order of subpopulations is unique. Replot-

ting, with a completely arbitrary x value representing the position in the

descending order, gives Figure 3, where five passes of a smoothing opera-

tor were carried out between adjacent points.3

We now regard the modified (or ‘‘effective’’ ) fractional subpopulation

sizes p0i as the unknown values and solve for them by requiring (2) to

hold.4 We rewrite (2) as

P1 þ pdP0=dp ¼ 0:

To evaluate this numerically, we first define QnðjÞ to be the jth value of

Pn in the ordered list: In other words, QnðjÞ are the data points in Figure 3.

Then (2) can be evaluated as

Q1ðjÞp0j
Q0ðj þ 1Þ �Q0ðj � 1Þ

p0jþ1 � p0j�1

" #
¼ 0; j ¼ 1; 2; . . . ;N;

where the derivative dP0=dp has been evaluated as a simple centered dif-

ference of the P0 values. Multiplying by p0jþ1 −p0j−1 gives a matrix pro-

blem for the p0j,

−Q1ðjÞ+p0j− 1 + fQ0ðj+ 1Þ−Q0ðj− 1Þgp0j
+Q1ðjÞp0j+ 1 = 0; j= 1; 2; . . . ;N:

These are N equations for the N unknowns p01;p
0
2; . . . ;p0N . However,

some care is needed at the endpoints of the range where values for j ¼ 0

and N þ 1 are required. Now the actual pj values reach as low as 4 ×
10�4, which is almost certainly close enough to zero that we can safely

add an extra ‘‘known’’ value j ¼ 0 to the list, where p00 ¼ 0, Q0ð0Þ ¼ 1,

without any loss of accuracy. At the high end of the probabilities, however,
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the actual pj values never exceed 0.026. Thus, we cannot add the obvious

p0Nþ1 ¼ 1;Q0ðN þ 1Þ ¼ 0 (although this would close the problem numeri-

cally) since because 0.026 is not close to unity, this would involve evalua-

tion of dP0=dp using values of p0 over the wide range (0.026 and 1),

which is so widely spaced that the centered-difference approximation

would yield completely inaccurate results. (Reposing the problem using

lnðpÞ as the unknown does not alleviate the problem.) Indeed, it can be

shown that since Pnð1Þ will be expected to be small for small n, P0 must

tend to zero with a very flat behavior as 1 is neared, confirming that a cen-

tered difference is ineffective.

Figure 3

The Data in Figure 2 but Ordered in Decreasing

Order of P0ðpÞ, With an Arbitrary x-Axis

Note: The smoothed version shown is used for the following calculations.
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It is of course unrealistic to seek P0 values for p near unity; even to

estimate the vanishingly small fraction of respondents knowing zero or

one males, for example, is impossible. Instead, we choose here to use a

one-sided difference for the gradient at the right-most point—namely,

Q1ðNÞ+p0N
Q0ðNÞ−Q0ðN− 1Þ

p0N −p0N− 1

� �
= 0; or

Q1ðNÞfp0N −p0N− 1g+ fQ0ðNÞ−Q0ðN− 1Þgp0N = 0:

This is a much more accurate representation of (2) for the last value of j,

but it suffers from the disadvantage that the system is now homogeneous

in the p0j. In other words, if there is a solution p0j, then Ap0j is another

solution for any constant A, so that the solution is unique only up to an

arbitrary multiplicative scaling.

We have experimented with other approaches but found no way to

avoid this numerical difficulty (a completely different approach is

sketched in the appendix, but this also proves hard to set absolute values

on the p0j). We choose to close the problem (which is a tridiagonal system

and so trivial to invert) by choosing the scaling to make the sum of

squared differences

XN
j= 1

ðp0j −pjÞ2

a minimum (i.e., we select a solution that is closest in Euclidean distance

to the original values). By this scaling, we expect very ‘‘visible’’ subpopu-

lations (e.g., those who died in a car wreck in the past 12 months) to show

an increased p0j compared with pj and less visible subpopulations to show

a decrease; recall that barrier effects can have either sign. Changing this

scaling merely rescales everything, mutatis mutandis. Note that the solu-

tion set fp0jg would be found—subject only to the final scaling chosen—

for any set fp0jg since the values are determined solely by the values of

the Q0ðjÞ and Q1ðjÞ. This is logical since we are arguing here that the

values of P0 and P1 determine the p0j values uniquely up to the scaling

factor.

Solving for the p0j gives the distributions of P0, P1, and P2, shown in

Figure 4. The values and orders of the Pn are unchanged, but now they

have an x-abscissa, which is the predicted probabilities. The largest prob-

ability, by this choice of scaling, is somewhat smaller (just over 0.02),

corresponding to the subpopulation with the smallest P0 value. A glance
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at the right-hand end of Figure 4 will show that evaluation of the slope of

P0 there by extending the curves to p0 ¼ 1;P0 ¼ 0 would be grossly in

error, validating our choice above of the one-sided derivative.

Figure 5a shows how the p0j compare with the original pj values. The

root mean square (RMS) difference between the p0j and the pj is 0.005.

The correlation between the two sets is excellent (0.75), although the rela-

tive scatter among small p values cannot be shown clearly by such a plot.

Instead, Figure 5b plots the ratios λj against pj, with the points labeled

with the subpopulation name. The results are often, but not always, intui-

tive. The subpopulations that are ‘‘visible’’ include car wreck victims (by

this scaling, an increase in p0j=pj of over 7), many female names, and sui-

cide victims. Many male names, homicide victims, and postal workers

Figure 4

P0ðpÞ;P1ðpÞ and P2ðpÞ (Smoothed), Plotted as Functions

of the Computed p0 Rather Than the Original p
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Figure 5

(a) Scatterplot of the Best Fits to Subpopulation Fractional Size

p0j Compared With the Original Values pj and (b) Estimates

of the Amount by Which pj Must Be Scaled Down to Obtain

p0j (i.e., the Ratio p0j=pj) as Functions of the Actual pj

Note: In (a), a few subpopulations are labeled. In (b), the points are labeled showing which

subpopulation is referred to. A dotted line is added at a ratio of 1.

(a)

(b)
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occupy a middle range of ratio values. Those we have identified as hard to

know (i.e., transmission errors) such as recent incarcerees, recent widows,

twins and diabetics, and those for which there are barrier effects (e.g.,

those with AIDS) all have very small ratios.

(The difference in behavior between male and female names is interest-

ing. The ratios p0j=pj are significantly smaller for male names than for

female names. The size of even the most popular female name subpopula-

tion is small compared with popular male names, which may make female

names more ‘‘visible’’ : Respondents may be more aware that they know

someone with a fairly rare name. However, since we are dealing almost

exclusively with the chance of knowing zero members or one member of

a subpopulation, it is hard to see why this would mitigate against popular

male names since while one may be uncertain how many Michaels one

knows, one can be sure if one knows at least one.)

A test of whether the answer is reliable is to predict the values of P2

using the finite-difference form

Q
predicted
2 ðjÞ= 1

2
Q1ðjÞ−p0j

½Q1ðj+ 1Þ−Q1ðj− 1Þ�
p0j+1 −p0j−1

( )
;

where the actual values are substituted at the endpoints j ¼ 1;N. The

result is shown in Figure 6. The degree of agreement is reasonable (given

our expectation of larger inaccuracy in reports of size 2 and above), with a

good correlation between the actual and predicted values, although the

predictions are mostly slightly lower than the actual values.

Solving for the Distribution of �P(c)

We argued at the start of this article that researchers really needed the dis-

tribution, or pdf, �PðcÞ. We argued in the last section that we have good

approximations to P0ðpÞ;P1ðpÞ, and so on. To complete the solution, the

problem must be inverted for �PðcÞ. Because there are only 29 known

values of P0ðpÞ (and we cannot use P1, etc. since they are automatically

consistent and add no information), it would appear that either we cannot

obtain more than 29 individual values of �PðcÞ or that the problem is

underdetermined. (One could, for example, add in a smoothness criterion

and find a least squares solution.)

While there are inversion methods for various binomial sums (Riordan

1968), they are not well suited for the underdetermined nature of the problem.
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However, we can replace the binomial with a Poisson distribution. This is

because all the probabilities considered here are small; for large probabil-

ities, P0 is vanishingly small, and so the error remains tiny. Indeed, the

algebraic results above hold identically for the Poisson distribution.

Then (1), for n ¼ 0, becomes

PoðpÞ=
X
c

�PðcÞ · expð−pcÞ:

Approximating the sum by an integral, we replace this by

PoðpÞ≈
Z∞
o

�PðcÞ expð−pcÞdc;

Figure 6

Actual and Predicted (From the Theory,

Equation (3)) Values of P2, as Functions of p
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so that P0ðpÞ is merely the Laplace transform of �PðcÞ. (In practice, �PðcÞ
is normally summed over a bin of size about 20; for the purposes of inver-

sion, this is ignored.) A fair approximation to P0ðpÞ is, from a least

squares fit (a fit minimizing absolute errors is similar),

PoðpÞ≈ α

p+α

� �v

;

where the power v ¼ 1:1794 and α ¼ 4:1866× 10�3. An overall less

accurate fit, although with a much better fit to the decay at larger p values,

is given by v ¼ 1:5;α ¼ 4:25× 10�3; this has relevance below. Other

functional forms—for example, ab=½ðpþ aÞðpþ bÞ�—give indistinguish-

able answers. The resulting inversion for �PðcÞ is

αv

�ðvÞ c
v− 1 expð−acÞ;

where � represents the gamma function; this is indeed a probability den-

sity function.

The inversion is shown as the firm curve in Figure 7 and is long-tailed.

The solution is a little sensitive to the power v chosen, in that the position

of the modal value of c can be changed by up to a factor of 2. However,

the best fit strongly resembles the discrete solutions found by other meth-

ods also shown in Figure 7 (Killworth, McCarty, et al. 1998; McCarty

et al. 2001). The c value for the maximum (i.e., modal) value is given by

ðv− 1Þ=α, here 43, perhaps somewhat smaller than the value of about 100

indicated in the comparison data, although the broad binning (to smooth

the empirical data) bands make the comparison less straightforward. The

peak value of the (binned) probability is 0.167, again slightly smaller than

the comparison data would indicate.

However, in all other respects, the agreement is excellent. The mean

value of c across the population is v=α ¼ 282, with a standard deviation

of v1=2=α ¼ 259, which are extremely close to the estimated values of

290 and 260, respectively, in the best available estimates we are aware of

(McCarty et al. 2001). We are unable to judge the agreement more quanti-

tatively, as the earlier estimates are empirical from a few data sets

(although consistent between them), and the new distribution here is

obtained by inverting a set of values that possess unknown errors. We also

lack other independent estimates of �PðcÞ with which to make a compari-

son, and there is considerable overlap in the data sets used in this and

prior estimates.
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Nonetheless, this agreement is most encouraging (although we stress

the sensitivity to the precise shape of the fit to P0 and hence to the struc-

ture of P0 itself). Although there is no connection between the scale-up

methodology approach to �PðcÞ and the approach used here, they agree in

the form, shape, and size of �PðcÞ and its first two moments.

Conclusions

This article has examined how to obtain an estimate of the probability

density function of the number of people known, c, from proxy data that

Figure 7

Empirical Distribution of �PðcÞ From Two Previous Surveys

and Two Different Approaches, Scale-Up and Summation

(cf. McCarty et al. 2001), Shown by Symbols, Together With

the Inverted Distribution �PðcÞ Found From P0ðpÞ,
Binned Into 60s, Shown by the Firm Curve
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possess various types of systematic (as well as random) error. We have

argued that respondents may be giving accurate responses based on incor-

rect knowledge (due to transmission errors and barrier effects) and that it

is possible to estimate the relative effective proportional sizes of subpopu-

lations so as to produce an internally consistent theory. Given these effec-

tive sizes, it is possible to invert the problem and obtain the shape of the

pdf of c, which, remarkably, agrees better than qualitatively with earlier

estimates as well as qualitatively with estimates based on recall of names

in telephone books (Freeman and Thompson 1989; Killworth et al. 1990).

Given that two entirely different methodologies were used to obtain esti-

mates of �PðcÞ, this level of agreement is most encouraging.

The approach we have used is not one of statistical fitting, which would

seek a signal among the P0 values in the presence of random noise. Here

the level of random noise—while clearly present—does not cause the dif-

ficulties, as the remarkable level of replicability between the two data sets

in Figure 1 demonstrates. Instead, we have sought to model the process

whereby incorrect knowledge can be used ‘‘as is’’ in a description of per-

sonal network size.

While the methodology we have outlined should work with other data

sets involving other subpopulations, a difficulty remains in that no clue

has yet appeared as to how one might prejudge the degree of over- or

underestimation λj for any new subpopulation. Such information would

be vital in teasing out subpopulations that are ‘‘hidden’’ but not obviously

so. For example, we know from much work that AIDS victims limit their

networks. But are there less stigmatizing illnesses whose sufferers also

limit their networks, of which researchers are unaware (and so use of

social network counting methods might underestimate the size of the sub-

population)? In other words, while the ‘‘effective’’ subpopulation size is a

convenient construct for our present purposes, it would be useful if one

could deduce the degree of misestimation in data for use in clarifying

further issues in social network theory. Policy makers in particular need to

know the actual sizes of important populations, not the effective sizes. To

move from effective to actual requires a theory both to explain why the

ratios of effective to actual are what they are and to predict what the ratios

should be for subpopulations whose size is initially unknown. Such a

theory remains lacking.

The best fit for �PðcÞ, as well as our earlier empirical estimates (Kill-

worth, Johnsen, et al. 1998; Killworth, McCarty, et al. 1998), is clearly

fundamental for modeling in the small-world literature. It is of interest that

its shape does not fall into any previously modeled category (it is not, for
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example, scale free), and it would be interesting to see whether theoretical

predictions based on the ‘‘power law times exponential’’ pdf for c would

fit observed path distributions in small-world experiments.

Finally, although this article is devoted to the refinement of estimates

of c and a description of the pdf for c, this work fits into a larger research

agenda. Personal network size involves several parameters that would

comprise a social physics. Social scientists must agree on a set of funda-

mental parameters on which they can begin to build their science. These

parameters can of course be refined and, in some cases, completely chan-

ged. We may ultimately determine that personal network size is not as

basic a construct as we currently think it is. Until we can agree on the

methods for establishing and measuring such parameters, the study of

society will remain a moving target, rather than a science where one find-

ing is built upon another.

Appendix
An Alternative Approach

The approach in the main article suffered from the difficulty that no abso-

lute values for the revised probabilities could be set because of inaccura-

cies if one attempted to evaluate derivatives beyond the smallest observed

P0. Here we explore another approach, although this will also suffer from

estimation difficulties.

We rewrite (2) as

dp

dPo

= − p

P1

; ðA1Þ

and assuming we know how P1 varies with P0, we can regard this as a dif-

ferential equation to determine p as a function of P0. Its solution is

p= exp −
ZPo
o

dPo

P1

0
@

1
A; ðA2Þ

where we use the fact that when p= 1;P0 = 0. The behavior of (A2) is

dominated by places where P1 is small. These are at P0 = 1, by definition,

and at P0 = 0, where the size of P1 is expected to be small. In the former

area, the manner in which P1 tends to zero is important. It must do so in a

way that makes the integral in (A2) infinite at P0 = 1, so that p= 0 there.
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But P1 becoming zero linearly or superlinearly with P0 gives very differ-

ent solutions for p due to the exponential in (A2). Similarly, the behavior

of P1 near P0 = 0 is crucial since if it tends to some small nonzero value,

this value will dominate the way in which p tends to zero, again due to the

exponential in (A2). It would appear to be difficult to acquire data for such

values of P0.

If we ignore these (nontrivial) difficulties, then for suitably chosen dis-

tributions P1ðP0Þ, which can be guessed at by examining how P1 and P0

covary, (A2) can be inverted and the problem solved. In practice, it is

usually simpler to examine the structure of P0ðpÞ from curves such as Fig-

ure 4, add disposable parameters, compute P1ðpÞ using (2), and eliminate

p between P0 and P1 to obtain the P1 −P0 relationship directly.

One such family of relationships, which resembles the shape of Figure 4, is

PoðpÞ= 1−pα

1+pα

� �m

: ðA3Þ

P1ðpÞ= αm

2
Pðm− 1Þ=m
o ð1−P2=m

o Þ≡ 2αmpα ð1−pαÞm− 1

ð1−pαÞm+ 1
: ðA4Þ

(Here, a> 0;m> 0.) Plots of (A4) are strongly independent of the parameter

m once it becomes large (which is necessary to reduce values at p= 1). P1

reaches a maximum as a function of P0 at

Po = m− 1

m+ 1

� �m=2

;

which is a very weak function of m (changing from 0.33 for m= 2 to 0.36

for m= 40) and is well approximated by 1=e for m above 2. This value fits

the P1 maximum observed rather well. To obtain the correct magnitude

for the curve requires α≈ 0:77, again essentially independent of m. Thus,

we possess a wide range of solutions, by varying m, all of which give a

good fit (not shown) to the observed P1 −P0 distribution.

However, this wide choice of m again has very strong effects on P0 as

a function of p. It is clear from (A3) that P0 decays increasingly rapidly as

m increases. Thus, from the P1 −P0 relationship alone, we cannot with

sufficient accuracy distinguish between the wide range of possible m

values, yet the value of m determines the effective scaling for the revised

probabilities. We have tried other functional relationships, with the same

inability to distinguish between wide parameter changes, and suspect that
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other approaches (e.g., spline fitting with specified endpoints and again a

smoothness requirement) might be more productive.

Notes

1. Family includes nonconsanguineal relatives, so that the figures for Native Americans

and widow(er)s and family make sense.

2. The reader may be concerned that properties of the respondent could also affect the

probability here, particularly the concept of ‘‘it takes one to know one,’’ if the respondent is a

member of the subpopulation. Recall, however, that the probability we define is averaged

over the entire population of respondents and so is only permitted to depend on the subpopu-

lation itself.

3. This smoothing took the form of replacing QnðjÞ by 0:25Qnðj− 1Þ+ 0:5QnðjÞ+
0:25Qnðj+ 1Þ, which conserves the mean but reduces the variance (and hence the noise) in

the fields. Smoothing is not essential to what follows; indeed, the entire calculation has been

carried out on the raw data. There are some small sign reversals, but qualitatively the same

picture emerges.

4. The (continuous) problem is formally underdetermined, and it is possible to imagine a

solution for P0 that possesses oscillatory second derivatives and fits the data perfectly while

being completely unrealistic. In such cases, the problem would be closed by the addition of

some smoothness criterion. This has some degree of arbitrariness, and we prefer the approach

here, wherein the centered-difference formulas themselves imply smoothness.
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